2209.09292v1 [cs.RO] 19 Sep 2022

arxXiv

D2CoPlan: A Differentiable Decentralized Planner
for Multi-Robot Coverage

Vishnu Dutt Sharma', Lifeng Zhou?, and Pratap Tokekar'

Abstract— Centralized approaches for multi-robot coverage
planning problems suffer from the lack of scalability. Learning-
based distributed algorithms provide a scalable avenue in
addition to bringing data-oriented feature generation capa-
bilities to the table, allowing integration with other learning-
based approaches. To this end, we present a learning-based,
differentiable distributed coverage planner (D2CoPLan) which
scales efficiently in runtime and number of agents compared
to the expert algorithm, and performs on par with the classical
distributed algorithm. In addition, we show that D2CoPLaAN can
be seamlessly combined with other learning methods to learn
end-to-end, resulting in a better solution than the individually
trained modules, opening doors to further research for tasks
that remain elusive with classical methods.

I. INTRODUCTION

Multi-robot coverage and tracking is a well-studied prob-
lem. Over the years, several approaches have been presented
for planning and coordination algorithms [19]. In particular,
consider the problem of covering a set of mobile targets
using a team of aerial robots with downwards-facing cameras
(Figure [T). A target is said to be covered if it falls within the
field-of-view of one of the robots’ cameras. The objective is
for the robots to choose their individual trajectories so as to
maximize the total number of targets covered.

There are several reasons why this problem is challenging.
Coordination amongst the robots is critical as you want to
avoid overlap and maximize the coverage. This is easier in
a centralized setting; however, our focus is on decentralized
strategies where the robots can communicate directly only
with their immediate neighbors. Decentralization is also
harder since each robot only knows of the targets in their
own fields-of-view. Finally, since we need to cover mobile
targets, we need to predict their motion over the planning
horizon. However, the motion model of the targets itself may
be unknown making the problem even more challenging.

In this paper, we investigate the question: Can the robots
learn to plan and coordinate in a decentralized fashion
for target coverage problems? Recently, there has been
significant work on learning-based approaches to multi-
robot planning. However, most of this work is restricted to
coordination for path finding (where each robot needs to find
the shortest path to its own goal position in an unknown
environment) [4], [8], [9] and formation control (such as

This work is supported by the National Science Foundation under Grant
No. 1943368 and ONR under grant number N00014-18-1-2829.

1Vishnu D. Sharma and Pratap Tokekar are with the Dept. of Computer
Science, University of Maryland, College Park, MD, USA {vi shnuds,
tokekar}@umd.edu

2Lifeng Zhou is with the Dept. of Electrical and Computer Engineering,
Drexel University, Philadelphia, PA, USA 1z457@ drexel.edu

flocking) [6], [13]. We build on this to study a more complex
task that requires planning, coordination, and prediction.

Our contribution is a decentralized, differentiable coverage
planner (D2CoPran) for multi-robot teams. D2COPLAN
consists of three differentiable modules, namely map en-
coder, decentralized information aggregator, and local action
selector. The input to D2CoPLAN is a coverage map that
represents predictions of where the targets are going to
be in the next timestep. This map comes from another
differentiable module we call Differentiable Map Predictor
(DMP). The map encoder takes the predicted maps and turns
it into a compact representation which is shared with the
other agents using a Graph Neural Network (GNN) [11].
The GNN aggregates information from neighboring agents
and uses that for selecting the ego robot’s action. D2COPLAN
is trained on an expert strategy (centralized optimal algorithm
that has global information) but is executed in a decentralized
fashion (following the Centralized Training, Decentralized
Execution paradigm [7]). We show that D2CoPLAN is a
scalable, efficient approach for multi-robot target coverage.
In particular, we show that D2CoPLaN is able to achieve
93% of the centralized optimal algorithm in upto 150x less
time but in a decentralized fashion.

A typical approach for this problem is to frame it as a
submodular maximization problem with a uniform matroid
constraint [1]. A decentralized greedy (DG) algorithm gives
theoretical performance guarantees and works well empiri-
cally [10], [15]. We show that D2CoPraN performs as well
as DG when the ground truth positions of the targets are
known and better when the robots have to predict the motion
of the targets. Further, the running time of D2CoP1aN scales
better compared to DG. A key advantage of D2COPLAN is
that it consists of two differentiable modules, where the ob-
servation processor module can be trained to be compatible
with the planner module. We investigate several ways of
combining the two modules as well as ablation studies for
the design of D2CoPLaN’s architecture.

The rest of the paper is organized as follows: we first
discuss the related work on this topic in Section |lLI} Then we
formulate the problem in Section Section describes
the design of D2CoPrLan. Section first provides the
implementation details and then describe various experiment
and the results obtained. We conclude by summarizing our
finding in Section [VI|and discuss the avenues of future work.

II. RELATED WORK

Multi-robot coordination problems have largely relied on
using classical, non-leaning-based approaches. The central-

ized approaches assume presence of a single entity which
can access observations from all the robots and plan ac-
cordingly. Since finding optimal solutions may be practically
intractable, the centralized approaches often utilize greedy
formulations to find approximate solutions. Many multi-robot
tracking and coverage objectives are submodular i.e., they
have diminishing return property, and greedy solutions pro-
vide constant factor approximation guarantee for them [17].

Finding solutions with centralized approaches is still com-
putationally expensive and the runtime rapidly increases
with the increase in the number of robots. Decentralized
approached provide an efficient solution at the cost of a
lower, but acceptable drop in the task performance, by
distributing the task of computation to cliques [12], [17],
[18]. The communication could be expanded to multiple hops
to increase the information horizon, but it comes at the cost
of increased runtime [10], [15].

Neural networks provide an avenue to improve upon
classical solutions through their ability to model complexities
using data. Furthermore, a differentiable approach can be
combined with other differentiable methods to enable effi-
cient with end-to-end learning from data [2]. Introduction
of GNNs [11] to solve problem with graph representations
opened doors to application of neural networks to decentral-
ized multi-robot tasks by facilitating feature sharing between
robots [4]. Recent works have successfully employed GNNs
to solve multi-robot problems such path planning [8], [9],
persistent monitoring [3], and formation control [6], [13]
among others. Specifically for multi-robot coverage prob-
lems, Tolstaya et al. [14] and Gosrich et al. [5] used GNNs in
different training paradigms to learn control policies. Many
of these works show that apart from achieving near-expert
solutions, GNNs can help scale well to larger robot teams.

Unlike these works, we specifically focus on target cov-
erage. Recently, Zhou et al. [16] proposed a planner for
the coverage problem using GNN and show such a planner
performs on par with the classical counterpart and scales
marginally better. However, their approach requires hand-
crafted features and uses only 20 closest target as input.
This design makes the network non-differentiable at the input
layer and thus can not be used in conjunction with other
learning methods. We address both these issues in our work
by using a richer map representation, while also improving
the coverage performance and scalability.

III. PROBLEM FORMULATION

In this work, we investigate the problem of decentralized,
multi-robot action selection for joint coverage maximization.
Consider the scenario in Figure |1} A set of N robots are
tasked to cover targets moving in a grid of size G X G. Every
robot R; has a set of actions A; that it must select from at
each time step. All the targets that fall within the sensing
range 75 (e.g., camera footprint) are said to be covered by
the robot. The objective is to maximize the total number of
targets covered by selecting the actions for each robot.

We assume that the robots do not collide with each
other (e.g., by flying at different altitudes). A robot R; can

Fig. 1: Multi-robot target coverage: a team of aerial robots aims at
covering multiple targets (depicted as red dots) on the ground. The
robots observe the targets in their respective field of view (green
squares) using down-facing cameras and share information with the
neighbors by communication links (red arrows).

communicate with another robot R; is if it is within the
communication range r.. The robots need to select their
actions based on only local information.

Each robot has access to a local coverage map, which
gives the predicted occupancy of targets near the robot
(specifically, targets that can be covered by its motion
primitives). Any overlap in covering the same set of targets
results in the targets being counted as covered only once.
We show an example in Figure [2] where robot 2 and robot
3 may end up tracking the same target. Thus, a robot must
collaborate with others to minimize overlap in motion for
efficient coverage. To do so, the robot must also share its
local coverage map with others. It is also important to share
a compact representation of the map to reduce the bandwidth
requirement of the algorithm.

Our main contribution is D2CoPranN, which solves both
problems simultaneously. It consists of an map encoder that
comes up with a compact representation of each robot’s cov-
erage map, an information aggregator, followed by an action
selector. Furthermore, since D2CoPLaN is differentiable, we
can combine it with a Differentiable Map Predictor (DMP),
that takes as input the history of observations from a robot
and predicts the coverage map of where the targets are going
to be when the robots move.

IV. METHODS

We present a differentiable, decentralized coverage plan-
ner called D2CoP1LaN to efficiently solve the multi-robot
coverage problem by predicting the best action for a robot
given its local coverage map. It can be integrated with any
differentiable map predictor (DMP), to solve tasks where
direct observations are not available. We design D2CoPLAN
as a combination of three sub-modules:

A. Map Encoder

This module takes the robot’s coverage map as input and
transforms it into a feature vector that can be share with
the robot’s neighbors. We implement this module using a
multi-layer Convolutional Neural Network (CNN), consisting
of convolution, pooling, and ReLU activation layers. The
input to the encoder is the coverage map as a single channel

Fig. 2: An illustrative example: at a given time step, each robot
R; must choose a motion primitive a; j (dashed curves). The back-
ground map shows areas with high target density with blue and low
target density with red. Here, R1 has one motion primitive {a1,1},
R> has two primitives {a2,1,a2,2}, and R3 also has two motion
primitives {as,1,as,2}. The size of the coverage map depends on
the robot’s sensing range rs and moving distance ds. As Ro and
R3 have overlapping coverage maps, they must communicate with
each other using communication link (red arrows) of range r., to
choose actions that can maximize the total coverage.

image of size G x G. The output features from the CNN are
flattened into a vector of size [x 1 before sharing with the
neighbors. This also allows for compressing the local maps
making it efficient to communicate them to other robots.
We choose CNN as the encoder here over a fully-connected
neural network as it allows for a richer representation than
the pre-processed inputs required for the latter as used in
prior work [16]. Furthermore, we do not need to limit the
maximum number of targets as input in our representation.

B. Distributed Feature Generator

This part of the network enables sharing of the map
encoding features with a GNN. GNN enables feature aggre-
gation for each graph node through neural networks, allowing
distributed execution. The information can be shared with
K-hop communication to the neighbors identified using the
adjacency matrix. The output of this module summarize
the information from the neighbors as a vector, enabling
informed decision-making in the next step.

C. Local Action Selector

The last module of D2CoP LN is responsible for prescrib-
ing the best action to the robot based on the information
gathered from the neighbors in the previous step. We imple-
ment this module as a Multi-Layer Perception (MLP) which
outputs a | A|-dimensional output, denoting the fitness of each
action, a; € A. During the training the loss is calculated
as cross-entropy over these outputs with the ground truth
actions. Thus, this module enables the gradient flow for end-
to-end training for D2COPLAN.

For training D2CoPLAN, we use a centralized greedy
algorithm as the expert algorithm to generate the target
actions. The centralized greedy algorithm has access to
global information (i.e., the global coverage map) and can

therefore make much more informed decisions. In fact, it is
known that the centralized greedy algorithm is within ~ 66%
of the centralized optimal which eliminates the need to run
optimal, brute force search algorithm that is infeasible for
generating training data for large number of robots. The
expert algorithm evaluates the coverage by each robot-action
pair and selects the pair with the highest value. The selected
robot and the covered targets are removed from consideration
and the process is repeated till each robot is assigned an
action. The algorithm has a time complexity of O(n?) for n
number of robots. We refer to this algorithm as EXPERT.

D. Differentiable Map Predictor

To transform the robot’s observation to coverage maps,
we introduce a map predictor module. To allow integration
with D2CoPLaN in order to learn the transformation we use
a differentiable map predictor (DMP). The design of DMP
depends on the task at hand, and can be realized with neural
networks. For example, if the task is defined as maximizing
coverage with moving targets, DMP can be implemented as
a recurrent neural network. We use CNN to solve this task
by stacking the historical observations as a multidimensional
image and train it with a pre-trained D2CoPLAN over the
expert actions. This module is optional and we can use the
ground truth coverage map for action selection, if available.

V. EXPERIMENTS AND RESULTS
A. Experiment Setup

In our experiments, We use D2CoPLAN trained over N =
20 robots. To generate the training data, we use a grid with
G =100 i.e., a grid with size 100 x 100. The target coverage
maps are generated using a mixture of Gaussian to simulate
low and high density areas. The intuition is to mimic real-
life situations such as animals density being higher closer to
water holes and lower around ditches in a forest. For this,
we choose a random number of Gaussian components in the
range [10, 30] with the standard deviation for each uniformly
sampled from the set {20, 30,40,50}. The locations of the
means are selected uniformly at random on the grid. Some
of the components are randomly inverted by multiplying by
—1 to simulate lower density regions. The probability density
obtained by summing up the components is then normalized
to obtain a categorical probability density function over the
grid. As the last step, we sample locations using this density
function to fill 15% of the grid cells to represent the target
locations. We simulate linear motion for the targets with
randomly chosen initial velocity.

The robot locations are randomly selected on the grid.
The action set for each robot consists of 5 actions, one per
cardinal direction and one to stay in place. The sensing range
rs = 6, each action moves a distance of dg; = 20, and
communication range is . = 20. With our choice of action
primitives, the coverage map looks like a rectangular field
on the grid of size G x G, where only the target within the
coverage map are visible. The communication is limited to
1-hop only. We generate total 40000 maps and run EXPERT
on each to obtain the target actions. From this dataset, 60%

Local Observation Processing D2CoPLAN
A A
r AV A\
Robot i’s Differentiable Map Map Encoder Distributed Feature Aggregator Local Action Selector
Observations Processor (CNN) (GNN) (MLP)
(DMP)
o >
- ; v
o\ o |— Crom— <
. - s. > ®

Predicted
coverage map at
time T

Observations at
time T-1

Action at time T

Fig. 3: Overview of our approach from a robot’s perspective: first the local observations are processed to generate the current coverage
map. This can be done with the Differentiable Map Processor (DMP). D2CoPLAN takes the coverage map as the input and processes
it to first generate compact feature representation, with Map Encoder; shares the features with its neighbors, using the Distributed
Feature Aggregator; and then selects an action using the aggregated information, with the Local Action Selector. The abbreviations in the
parentheses for D2CoP1raN’s sub-modules indicate the type of neural network used in their implementation.

instances are used for training, 20% are used for validation
and the rest are used for testing.

Map encoder is implemented as a 3-layer CNN (Conv—
ReLU— Maxpool) with intermediate output features of size
4, 8 and 16. The final output is flattened to a vector of size
1600. This vector acts as a compresses map representation.
For Distributed feature aggregator, we use implementation
by Li et al. [8] with 2 graph layers of 512 and 128 nodes
and ReLU activation. Local action selector is implemented
as a single layer fully connected network, directly predicting
the actions. We also use dropout of 20% in the CNN layers
and after the GNN to regularize the network. We train the
network on an Nvidia GeForce RTX 2080Ti GPU with 11GB
of memory for 1500 epochs and use the network weights with
the minimum validation loss for evaluation.

B. Evaluation

An efficient distributed planner must have some desirable
properties: it should run faster than the centralized algorithm,
while achieving coverage within a reasonable margin of the
centralized algorithm; and it should scale well with varying
number of agents by generalizing beyond the settings it is
trained on. In this section, we present empirical evidence that
D2CoP1aN has the aforementioned desirable properties. We
go one step further and show that D2CoP1raN scales better
than even DG. Finally, we demonstrate the advantages of a
differentiable design. Specifically, we show that D2CoPLaN
performs better when combined with DMP than DG.

1) Comparisons with ExpERT: We begin by comparing
the coverage performance (number of targets covered) and
runtime of D2CoPLaN with the ExperRT which is the cen-
tralized greedy algorithm that D2CoPLaN is trained using.
In this set of experiments, we use the ground truth coverage
map as inputs since our focus is on evaluating the planner.
In subsequent experiments, we will evaluate the effect of the
map predictor on the coverage task.

D2CoPLaN was trained on a dataset of 20 robots in a
grid of size 100 x 100. We compare the two algorithms with

increasing number of robots (from 4 to 50) in the same grid.
We run 1000 Monte-Carlo simulations for each setting.

The results for this evaluation are shown in Figure [
D2CoP1LaN has a clear advantage in terms of runtime and the
advantage increases as the number of robots increases. For
example, with 50 robots, D2CoP AN is more than two orders
of magnitude faster than ExperT. This is not surprising
since ExPERT is a centralized algorithm whose runtime
scales quadratically with the number of robots whereas
D2CoPLaN is a decentralized algorithm. In addition to being
significantly faster, we also observe that D2COPLAN covers
92% of the targets as the ExpERT, despite each robot having
only a limited amount of information.

2) Comparisons with DG: Next, we compare D2COPLAN
with a classical decentralized algorithm, DG. In DG, each
robot chooses its own action by running a greedy algorithm
but only on the set that includes itself and its immediate
neighbors (hence, decentralization). As shown in Figure [3]
D2CoPraN and DG perform almost the same in terms of the
number of targets tracked. However, the real advantage of
D2CoPLAN comes in the runtime where we observe it be-
comes much faster than DG as the number of robots increase
(e.g., with 50 robots, D2CoPLaN is almost twice as fast).
While both algorithms are decentralized, DG still requires
running a greedy algorithm over the local neighborhood of
each robot which increases the runtime as the density of
the robots increase. Furthermore, in Section we show
that D2CoPLaN outperforms DG even in terms of coverage
performance when the true coverage map is not given.

3) Generalization: Next, we evaluate the generalization
capability of D2CoP1aN beyond the scenario it has been
trained on. We test two types of generalization: (1) across
number of robots; and (2) across density of the targets (i.e.,
coverage map) in the environment. For both tests, we train on
a specific number of robots (1) or target density (2) and test
with a different number of robots (1) or target density (2).
We summarize these results in Table [l and Table [[Il obtained
over 1000 Monte-Carlo runs.

14
00 I EXPERT

[0 D2CoPLAN
1200

)
i

1000

800

§ ,H,-}.}%I-

iy
ey

Number of targets covered

200

4 6 8 10 20 30 40 50
Number of robots

(a) Scaling in terms of Coverage

mmm EXPERT
mmm D2CoPLAN

) I I | | \
1ot I. II I- = En Em BN BN
4 6 8 30 40 50

Number of robots

H
<

log(Runtime), in sec

(b) Scaling in terms of time

Fig. 4: Comparison of ExpERT, D2CoPLAN, and Random in terms of running time (plotted in log scale) and the number of targets
covered, averaged across 1000 Monte Carlo trials. D2CoPLan was trained on 20 robots. D2CoPLAN is able to cover 92%-96% of the

targets covered by ExpERT, while running at a much faster rate.

3 DG

1200 EEE D2COPLAN ﬁ
1000 ﬁ
¢ ¢

800

: ﬁ{.{.-}%

200

Number of targets covered

4 6 8 10 20 30 40 50
Number of robots

(a) Scaling in terms of Coverage

mm DG

4x107° mmm D2COPLAN

w
x
=
1)
&

2x1073

N I I II II II |I ‘I
=H B
4 6 8 30 40

Number of robots

log(Runtime), in sec

50

(b) Scaling in terms of time

Fig. 5: Comparison of D2CoPran, and DG in terms of running time (plotted in log scale) and the number of targets covered, averaged
across 1000 Monte Carlo trials. D2CoPLaN was trained on 20 robots. D2CoPLAN is able to cover almost same number of targets as DG.
DG is faster for fewer number of robots, but as the number of robots increase, D2CoPLAN scales better than it.

We observe that D2CoPran generalizes well in both
cases. Table [I| shows the coverage performance when trained
on the number of robots given in the row and tested on the
number of robots given in the column. We see that in most
cases, the performance remains unchanged. The network
trained on 10 robots sees a slight drop in performance on
other test configurations but still covers around 90% of the
targets covered by EXPERT.

D2CoPLaN also generalizes well across varying target
density as shown in Table [l We observe that D2CoPLAN
trained with a target density of 15% performs almost the
same when tested on other target densities. The performance
is ~ 93% of the ExpERT in all cases but 5% density (where
itis ~ 91%), which we believe is caused by fewer number of
available targets, increasing the gap in the performance of the
compared algorithms. These results validate the claim that
D2CoP1aN trained under one type of scenario generalizes
to other deployment scenarios.

4) Prediction and Planning: A key advantage of
D2CoPLanN is its differentiablity, allowing D2CoPLAN to
be combined with other gradient-based learning methods to
solve challenging problems in an end-to-end manner. In this

Test
10 Robots |20 Robots |30 Robots
Train
10 Robots 93.95% | 91.12% | 89.71%
20 Robots 94.38% | 93.17% | 92.60%
30 Robots 93.25% | 93.47% | 93.73%

TABLE I. Percentage of the targets covered (the average
across 1000 trials) with respect to ExPERT by D2COPLAN
trained and tested with varying numbers of robots.

section, we evaluate how the differentiable map predictor can
be trained along with the differentiable planner (D2CoP1LAN)
and compare it with DG.

So far, we have used the ground truth coverage map as
input to the planners. Now, we consider a scenario where the
input consists of the observations of the targets over the past
timesteps. The true motion model of the robots is not known
to the robots. Therefore, they need a predictor to estimate
the positions of the targets over the planning horizon which
can then be used by DG or D2COPLAN.

Here, we use a DMP to learn the motion model. The

Target Density | Relative coverage
5% 91.40%
15% 93.20%
25% 93.46%
50% 93.46%

TABLE II: Percentage of the targets covered (the average
across 1000 trials) with respect to ExPERT by D2COPLAN
across varying target density maps.

targets move with a linear velocity selected randomly at the
start of the episode (unknown to the planner). To show the
advantage of having a decentralized planner, we compare
three methods: (1) an OrRACLE i.e., the ground truth map as
the mapper along with ExpERT as the planner; (2) DMP as
the learnable mapper with DG as the planner; and (3) DMP
as the learnable mapper with D2CoPLaN as the planner. In
(2), DMP is trained from scratch where in (3) DMP is trained
by backpropagating the loss from D2CoPLAN. D2COPLAN
itself is frozen and aids DMP in learning better representations
for action prediction. The three settings present different
combinations classical and learning-based approaches.

Coverage maps observed over last 3 time steps are used
as input to DMP and it predicts the map at the next time
step. We use a 4-layer CNN with 8, 16, 4 and 2 channels as
DMP. We keep the map size same across each layer to avoid
information loss and predict the occupancy probability of
each cell as a two channel map. The probability map thus
obtained is used as input to the planner. We trained DMP
over 2000 epochs with 5 examples of 20 robots (i.e., 100
training instances) in each. Given that most of the cells in
the coverage map will be zero, we weigh the cross-entropy
loss by a ratio of 1:10 for free and occupied cells. The action
prediction loss for (3) is the unweighted cross-entropy loss.

Figure [6] shows a comparison of the three approaches
and provides evidence for benefit of using a differentiable
planner to realize end-to-end learning. The combination of
D2CoPraN and DMP is better compared to DG and DMP,
despite DMP in the latter being trained on ground truth. We
attribute this to the fact that D2CoPraN and DMP form a
differentiable chain which allows DMP to be trained directly
on the downstream task (action selection) rather than on just
map prediction. DG and DMP, on the other hand, are not a
differentiable chain and thus DMP cannot be trained on the
downstream task directly.

We further explore this by comparing 3 ways of training
DMP when used in conjunction with D2CoPrLan: (1) DMP
and D2CoP1AN are trained together from scratch; (2) DMP
and D2CoPLaN are trained individually and then used to-
gether; and (3) D2CoPLanN is first trained and then DMP is
trained on loss from D2CoP1aN while D2CoP L AN is frozen.

Figure [/| shows the comparison of all three methods. The
third approach outperforms the other two. This demonstrates
the advantage of having a differentiable planner. Using a pre-
trained and frozen D2CoPLaN and training directly on the
downstream task loss, allows DMP to learn patterns beneficial
for action prediction and not just for map prediction. If both
modules are trained from scratch in an end-to-end manner,

1100

1000

N .
800 |

600

Number of targets covered

500

DMP + DG DMP + D2CoPLAN ORACLE + EXPERT

Fig. 6: Comparison of coverage highlighting the effect of using
D2CoPLaN, a differentiable planner to aid learning for a differ-
entiable map predictor (DMP), which works better than the DMP
trained standalone.

1000

. E

600

Number of targets covered

500 xT

400 5

Trained together Both pre-trained D2CoPLAN pre-trained

Fig. 7: An ablation study for DMP and D2CoPLan. The plot shows
results for the scenarios where there parts and trained together or
in isolation.

they may need more time to learn the same behavior. The
third approach also does not require ground truth motion
models for the targets to be available for training DMP. While
in this paper we use the ground truth to generate the expert
solutions used in training D2CoPLAN, in general, one can
use any other expert algorithm such as human inputs to train
D2CoP1anN which does not need ground truth target motion.

VI. CONCLUSION

We presented D2CoP1an, a differentiable, decentralized
target coverage planner for multi-robot teams. Our experi-
mental results show that D2CoP1raN is more scalable than
the classical decentralized algorithm that is used for such
tasks while performing closer to the centralized algorithm.
Furthermore, due to the fact that it is a differentiable planner,
we can combine this with other differentiable modules (e.g.,
a coverage map predictor) to yield better performance than
the classic counterparts. These results present an encouraging
path forward for multi-robot coordination tasks. Our imme-
diate work is evaluating D2CoPLaN for more complex tasks.
In this paper, we train D2CoPLAN in a supervised setting. We
are also working on training D2CoPLaN with reinforcement
learning. Finally, an interesting avenue for extension is where
we learn not just what to communicate with other robots (as
we do in this paper) but also who to communicate with.

[1

—

[2

—

[3

=

[4

=

[5

—

[6]

[7]

[8

=

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

REFERENCES

Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrak.
Maximizing a monotone submodular function subject to a matroid
constraint. SIAM Journal on Computing, 40(6):1740-1766, 2011.
Devendra Singh Chaplot, Deepak Pathak, and Jitendra Malik. Dif-
ferentiable spatial planning using transformers. In International
Conference on Machine Learning, pages 1484—-1495. PMLR, 2021.
Jingxi Chen, Amrish Baskaran, Zhongshun Zhang, and Pratap Tokekar.
Multi-agent reinforcement learning for persistent monitoring. In
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2021.

Fernando Gama, Elvin Isufi, Geert Leus, and Alejandro Ribeiro.
Graphs, convolutions, and neural networks: From graph filters to graph
neural networks. IEEE Signal Processing Magazine, 37(6):128-138,
2020.

Walker Gosrich, Siddharth Mayya, Rebecca Li, James Paulos, Mark
Yim, Alejandro Ribeiro, and Vijay Kumar. Coverage control in multi-
robot systems via graph neural networks. In 2022 International
Conference on Robotics and Automation (ICRA), pages 8787-8793.
IEEE, 2022.

Arbaaz Khan, Ekaterina Tolstaya, Alejandro Ribeiro, and Vijay Kumar.
Graph policy gradients for large scale robot control. In Conference
on Robot Learning, pages 823-834, 2020.

Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement
learning as a rehearsal for decentralized planning. Neurocomputing,
190:82-94, 2016.

Qingbiao Li, Fernando Gama, Alejandro Ribeiro, and Amanda Prorok.
Graph neural networks for decentralized multi-robot path planning. In
2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 11785-11792. IEEE, 2020.

Qingbiao Li, Weizhe Lin, Zhe Liu, and Amanda Prorok. Message-
aware graph attention networks for large-scale multi-robot path plan-
ning. IEEE Robotics and Automation Letters, 6(3):5533-5540, 2021.
Guannan Qu, Dave Brown, and Na Li. Distributed greedy algorithm
for multi-agent task assignment problem with submodular utility
functions. Automatica, 105:206-215, 2019.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and Gabriele Monfardini. The graph neural network model. IEEE
transactions on neural networks, 20(1):61-80, 2008.

Guangyao Shi, Md. Ishat-E-Rabban, Lifeng Zhou, and Pratap Tokekar.
Communication-aware multi-robot coordination with submodular
maximization. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2021.

E. Tolstaya, F. Gama, J. Paulos, G. Pappas, V. Kumar, and A. Ribeiro.
Learning decentralized controllers for robot swarms with graph neural
networks. In Conference Robot Learning 2019, Osaka, Japan, 30 Oct.-
1 Nov. 2019. Int. Found. Robotics Res.

Ekaterina Tolstaya, James Paulos, Vijay Kumar, and Alejandro
Ribeiro. Multi-robot coverage and exploration using spatial graph
neural networks. In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 8944-8950. IEEE, 2021.
Ryan K Williams, Andrea Gasparri, and Giovanni Ulivi. Decentralized
matroid optimization for topology constraints in multi-robot allocation
problems. In 2017 IEEE International Conference on Robotics and
Automation (ICRA), pages 293-300. IEEE, 2017.

Lifeng Zhou, Vishnu D Sharma, Qingbiao Li, Amanda Prorok, Ale-
jandro Ribeiro, Pratap Tokekar, and Vijay Kumar. Graph neural
networks for decentralized multi-robot submodular action selection. In
2022 IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR), 2022, accepted.

Lifeng Zhou and Pratap Tokekar. ~Multi-robot coordination and
planning: Recent trends. Current Robotics Reports, 2021. Invited.
Lifeng Zhou, Vasileios Tzoumas, George Pappas, and Pratap Tokekar.
Distributed attack-robust submodular maximization for multi-robot
planning. IEEE Transactions on Robotics (TRO), 2022.

Yang Zhou, Jiuhong Xiao, Yue Zhou, and Giuseppe Loianno. Multi-
robot collaborative perception with graph neural networks. [EEE
Robotics and Automation Letters, 7(2):2289-2296, 2022.

	I Introduction
	II Related Work
	III Problem Formulation
	IV Methods
	IV-A Map Encoder
	IV-B Distributed Feature Generator
	IV-C Local Action Selector
	IV-D Differentiable Map Predictor

	V Experiments and Results
	V-A Experiment Setup
	V-B Evaluation
	V-B.1 Comparisons with Expert
	V-B.2 Comparisons with DG
	V-B.3 Generalization
	V-B.4 Prediction and Planning

	VI Conclusion
	References

